
XML Based Scientific Data Management Facility

P. Mehrotra

NAS Division, M/S T27A-!

NASA Ames Research Center

Moffett Field, CA 94035 USA

pmehrotra@arc.nasa.gov

M. Zubair

Department of Computer Science
Old Dominion University
Norfolk, VA 23529 USA

zubair@cs.odu.edu

Abstract

The World Wide Web consortium has developed an Extensible Markup Language (XML) to
support the building of better information management infrastructures. The scientific computing
community realizing the benefits of XML has designed markup languages for scientific data. In
this paper, we propose a XML based scientific data management facility, XDMF. The project is
motivated by the fact that even though a lot of scientific data is being generated, it is not being
shared because of lack of standards and infrastructure support for discovering and
transforming the data. The proposed data management facility can be used to discover the
scientific data itself, the transformation functions, and also for applying the required
transformations. We have built a prototype system of the proposed data management facility
that can work on different platforms. We have implemented the system using Java, and
Apache XSLT engine Xalan. To support remote data and transformation functions, we had to
extend the XSLT specification and the Xalan package.

1. INTRODUCTION

We are entering the second phase of the World Wide Web revolution where the target for

information is not a human, but a machine. In the first phase, a digital document was represented
using HTML, which is rendered for display by browsers for human consumption. It was soon
realized that HTML representation of a digital document has limitations. In particular, it makes the

document unsuitable for machine processing, which is essential for building a distributed
information infrastructure that can be efficiently searched and managed. The World Wide Web

consortium has developed an Extensible Markup Language (XML) to support the building of
better information management infrastructures. XML allows a community to describe its own

grammar that meets its needs more efficiently. For example, it is now possible for a community to
separate the structure of the document from its presentation. One can define a set of tags to

represent the abstract structure of the document, which makes it suitable for machine processing.

The scientific computing community, also realizing the benefits of XML, has designed markup

languages to represent scientific data. There are several initiatives focusing on this issue, such as
the Extensible Scientific Interchange Language (XSIL) [t], and the eXtensible Data Format (XDF)

[2]. We hope that finally the community will agree on one language for the scientific data

representation. We believe that this language will have two components: a core component
describing the structure of the scientific data and the second, discipline specific component, may

contain metadata describing the circumstances of the data collection and other information for
understanding the data details.

A workshop on Interfaces to Scientific Data Archives organized by California Institute of

Technology made a strong case for an XML based scientific data management infrastructure [3].
In this paper, we propose a XML based scientific data management facility (XDMF). The project

is motivated by the fact that even though a large amount of scientific data is being generated,

both experimentally and programmatically, relatively little is being shared among the scientists
because of lack of standards and infrastructure support for discovering and transforming the data.
The proposed XDMF will make the process of discovering data along with the relevant

transformationsrequiredforsharingsuchdata,easierandmoreefficient.In particular,thefocus
is to automatethisprocessandmakeit locationindependentsuchthattheuser,thedataandthe
transformationcodemaybe in distributedlocations.Considerthesituationinwhicha scientist
wantsto usesomespecifickind of data,for example,windtunneldata, in the courseof a
simulation.TheuservisitstheXDMFhosted,say inVirginia,andexecutesa searchusingsome
specificmetadatafields.He is presentedwitha list of registereddatasatisfyinghisquery.He
selectsoneof thedatasetsfromthis listafterexaminingthedetaileddescription.Theselected
datais availablefroma site located,sayin California(NotethattheXDMFonlykeepstheXML
documentdescribingthedataandnotthedataset itself).However,in manycasesthedatawill
be in a formatnotdirectlyusefulto the userand it wouldhaveto be transformedintoanother
formatbeforeit can be utilized.The usercan thensearchthe XDMFfor a listof applicable
transformationfunctions.Theuserselectsa transformationfunctionlocated,say inSeattle.The
XDMFretrievesthe data from California,retrievesthe transformationfunctionfrom Seattle,
appliesthetransformationandsendsthetransformeddatatotheuser(weareassumingthatthe
dataandtransformationfunctionsareaccessiblethroughHTTP).Ina moregeneralscenario,the
datawouldbe requiredonlyat thetimethat thecodeis to beexecutedas a partof a larger
application.Insuchsituations,theproposedXDMFcanbeintegratedintoa largerframeworkand
canfacilitatethedownloadingandtransformationofthedataatruntime.
We have built a prototypeof the XDMFthat can work on differentplatforms.We have
implementedthesystemusingJava,and ApacheXSLTengine,Xalan[4]. To supportremote
data and transformationfunctions,we had to extendthe ExtensibleStyle Languagefor
Transformation(XSLT)specificationandtheXalanpackage.Forour initialprototype,wehave
usedXSILfor representingthescientificdata.Notethatbydoingthiswearenotendorsingany
oneinitiative.Ourobjectiveis to demonstratethebenefitsof an XMLbaseddatamanagement
facility.In fact,wealsoshowthatthecurrentscientificdatamarkuplanguageswill needto be
extendedto buildtheproposedfacility.
Therestofthepaperisorganizedasfollows.Inthenextsectionweprovidesomebackgroundon
XSIL,a XMLbasedscientificdata interchangelanguageand XSLT,an XMLtransformation
language.Section3presentsanoverviewandarchitectureoftheproposedfacilitywhileSection
4 providesa briefdescriptionofthecurrentprototype.

2. BACKGROUND

2.1 Extensible Scientific Interchange Language (XSIL)

The Extensible Scientific Interchange Language (XSIL) [1] has been developed by the Center for

Advanced Computing Research, Caltech to represent the basic syntactic structure for scientific
data such as Table, Array, and Stream in XML. The Table is similar to a relational table that
contains an unordered set of records, each of the same format; the Array is collection of numbers

of some other primitive data type; and the Stream element provides a link to external and

encoded data through files and URL's. Two sample XSIL documents, one representing small

< ?xml version= "1.0"?>

<XSIL>

<Array Name= "Coordinates '" Type= "float">

<Dim>4</Dbn>

< Dim > 2 </Dim >

<Stream Encoding= "Text" l_vpe= "Local'"

Delimiter= ", "> l, O, I, 1, O. 1, - I, 1

</Stream >

</Array>

< ?xml version= "1,0"?>

<XSIL>

<Array Name= "Coordinates" T._pe= 'float">

<Dim>4</Dim>

<Dim>2</Dim>

<Stream Type= "Remote" Delimiter= ", ">

data. dat </Stream >

</Stream>

</A rra v>

Figure 1: Sample XSIL documents with local data (left) and remote data (right)

size local (in-line) data and the other representing remote data, are shown on the left and right
side of Figure 1 respectively.

2.2 Transformations

The ease of transforming an XML document from one form into another is key to the XML
usefulness. The transformations are typically necessitated when we move XML documents
between two disparate organizations. In such a case, an XML document in one organization
exists in a form different from the one in the other organization. This could be because the two
organizations are using different languages to markup their data. For this purpose, the World
Wide Consortium has introduced Extensible Style Language for Transformation (XSLT). One
uses XSLT to write stylesheets, which essentially represent a set of instructions for transforming
one XML document type to another. Note that you need an XSLT engine to process these
instructions. An example of XSLT engine that is in public domain is Apache Xalan [4]. The XSLT
specification also supports transformations like sorting of document elements, summing and
averaging numbers, etc.

3. XDMF

3.1 Overview

In this project we have focused on XDMF, an XML based scientific data management facility for
discovering and transforming data sets stored in distributed locations. Figure 2 gives an overview
of the functionality of the XDMF. The XDMF interacts with three entities: the data generator, the

_ _ Register data (Metadata-
information about data in XML)

Tg..,u'...tt,_., L J l_ign _J f"_'_ Register transformation

I t',_t_,, _ Pha__ "_ _ Specification in XML

__ _t_.._,,,_ _j_ _ _ Search and identify data and

I @ Retrievethedata
I

'@Data Execution../
Generator _ Pha_ _ Retrieve the transformation function

/

\ -- I ff'_ Deliver the data after applying the

'4_ _ requested transformation

Figure 2: Overview of XDMF

transformation function developer, and a distributed computing framework. The data generator is

responsible for registering the scientific data that is to be shared with other researchers. For this
he uploads the XSIL file describing the structure of the data along with other metadata providing
semantic information about the data. For example, the metadata could contain information about

the conditions and constraints under which the data was generated. The transformation function

developer registers the transformation function by uploading the XSLT specification along with
necessary metadata that describes the type of transformation, the function support and the
constraints under which the transformation is applicable. We are basing our approach for

transforming scientific data on the XSLT engine. As the required scientific data transformation
could be complex, for example converting a node-centered unstructured grid data in a CFD

simulation to an edge-centered format, it is not possible to describe these transformations in the
XSLT specification file. In such situations we will use the facility provided by the XSLT

specification for referencing external transformation functions. Given that in most cases we will
have to use external transformation functions, the question arises: why use the XSLT

specification at all? The reasons for using XSLT specification are: (1) the input data specification
is in XML and the transformed data is also specified in XML thus necessitating the use of a XSLT

engine, (2) development cost is low as the XSLT engine, which is a standard module freely
available in public domain, provides support for all the other required work like downloading the
transformation function and the scientific data from remote sites, applying the transformation

function on the downloaded data, and storing the transformed data and its XML specification.

We now illustrate the information flow by considering an application designer, working with a
framework, who is in need of scientific data for his application. During the design phase of his

application, he visits the XDMF and identifies a data set registered in the XDMF. Along with the
data set, he also chooses an appropriate transformation function in the form of an XSLT

specification. During the execution phase, the data management gateway requests the
transformed data from the XDMF. The XDMF in turn, downloads the data and the transformation

functions from remote locations, applies the transformation and returns the XML file describing

the transformed data. The gateway software processes the XML file, retrieves the transformed

data and supplies it to the application.

3.2 Architecture

The architecture of the XDMF, as shown in Figure 3, consists of (1) a digital library that holds the

scientific data specification, transformation function specification along with other metadata, (2)
data transformation component based on Xalan XSLT engine that retrieves the data and the
transformation function from remote sites and applies the transformation, and (3) publication,

search, and transformation request handlers. All interactions with the XDMF are based on HTTP.
The data generator interacts with the XDMF publication handler to publish the scientific data

specification in XSIL along with other relevant other metadata about the data. Similarly, the
transformation specification developer interacts with the publication handler to publish the

transformation specification and its metadata. The application designer interacts with the search
handler to discover and identify the scientific data and the transformation function in the digital

library. The framework gateway initiates retrieval request for the transformed data to the
transformation handler, which in turn interacts with the data transformation component.

The Digital Library architecture is based on the Java-based search service that was developed for

Joint Training, Analysis and Simulation Center (JTASC) [4]. The benefit of this architecture is that
it is platform independent, and it can work with any Web server as it is based on Java servlets.

Moreover, the changes required to work with different databases are minimal. Our current

implementation supports two relational databases, one in the commercial domain (Oracle), and
the other in public domain (MYSQL). The architecture employs a three-level caching scheme to

improve performance [4].

Data Sepcififcation in XSIL

and Tx Function Specifcation in

Extended XSLT Stylesheet

along with other metadata are

stored in the Digital Librry

Digital Library

LT -)(alan) J

T
Transformation Data retrieved

class retrieved from remote

from remote location

location

I Publication 1
Handler

ISearch & Tx._

Handler .J

Data _-Generator

Transformation

Function

Developer

Application

Designer/
Framework

Gateway

Figure 3: Architecture of XDMF

3.3 Extending XSLT Specification and XALAN

One major problem faced when using XSLT is its limited functionality, especially in performing
complex scientific data transformations. The XSLT specification supports constructs for simple
operations, such as, sorting and summation, only. However, scientific data transformations are in
general much more complex. To address this issue, we have used the XSLT extension support to
define new functions that include any scientific transformation logic and to associate them with
Java classes. These functions can then be called in a XSLT specification. For this we have to
make the following modifications in the XSLT specifications as shown in Figure 4. First, we have
to declare an extra namespace for the extension along with an extension-element-prefix (lines 4-
5, Figure 4). Second, we declare the new function, polar3 here, and associate it with a remote
Java class (lines 6-8, Figure 4). Lastly, we call the extension function, again polar3, in the
appropriate transformation rule of the XSLT specification (line 14, Figure 4).

The Xalan package does not provide support for a remote Java class, e.g., specified via a URL,
which has been associated with the external functions. As described above, access to remote
transformations is central to the design of the facility (see Figure 2). To provide this support, we
had to extend the Xalan-Java processor to handle the extension function calls specified via a
URL by modifying the ExtensionFunctionHandler.java in Xalan package org.apache.xalan.xpath.

3.4 Prototype

We have implemented a standalone prototype that has the core functionality of the data
transformation and digital library support. The current prototype allows users to select a scientific
data specification along with the transformation to be applied. Once selected, the XMDF retrieves
the scientific data from a remote location, say from www.icase.edu, retrieves the transformation
function from, say www.cs.odu.edu, and applies the transformation, delivering the transformed
data to the user over the Web. We have also implemented a Web based publication tool, which
allows (a) the data generator to upload the XSIL specification of the data along with other

< ?xml version = "1.0"?>

<xsl:stylesheet xmlns:xsl= "http:/A,'ww. w3. org/1999/XSllrransform ""

xmlns:a.¢slt= "'http://xml.apache.orgZrslt"

xmlns:myxslt=http://www.cs.odu.edul~zubair/demo/RemoteXSLTExtensions

extension-element-preftxes= "myxslt" version= "1.0">

<axslt : component preftt= "myxsh" functions= "polar3">

< a.tslt:script lang = "_a vaclass " src= "http://www. cs. odu. edu/-zubair/demo/RemoteXSLTE._tensions, class "/>

</axslt :component >

,..

<xsl:template match= "Stream">

<Stream>

...

<xsl:variable name= "stream" select= ". "/>

<xsl:value-of select="myxsh:polar3(string(@Delimiter), string($stream))"/>

</Stream>

</xsl: template>

<Ztsl:stylesheet>

Figure 4: Modified XSLT specification for transforming data using an external function

metadata into the digital repository, and (b) the transformation function developer to upload the
transformation specification along with necessary metadata into the digital repository.

4. CONCLUSION AND FUTURE WORK

In this paper we have proposed a XML based data management facility. The proposed XDMF
provides support for: (a) registration of XML documents describing scientific data, (b) registration
of XML documents describing transformations functions, (c) association of a scientific data set
with the available transformation functions, (d) searching and browsing of scientific data based on
specific metadata fields, (e) transformation of data once the user has identified the data and the
transformation, (f) remote data and remote transformation functions. The proposed XDMF is easy
and efficient to build as it is based on XML standards, thereby allowing reuse of publicly available
tools such as parsers, and transformation engines. In future, we plan to develop APIs for the
XDMF to allow framework developers to write their own data manager gateway software for
integration with XDMF. We plan to work with other researchers in standardizing a XML language
for specifying transformation function and other discipline specific component of the scientific
data.

5. ACKNOWLEDGMENTS

This work was supported by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-97046 while the authors were in residence at the Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681.
We are also thankful to Tan and Jakatdar for implementing some of the modules for XMDF.

REFERENCES

[1] Extensib/e Scientific Interchange Language (XS/L), http://www.cacr.caltech.edu/SDA/xsil/

[2] eXtensib/e Data Format (XDF), http://tarantella.gsfc.nasa.gov/xml/XDF_home.html

[3] R. Williams (Ed.),/nterfaces to Scientific Data Archives, Workshop Report, California Institute
of Technology, Pasadena, 1998. http://www.cacr.caltech.edu/SDA/ISDA398/report.html

[4] Kurt Maly, Mohammad Zubair, Husham Anan, Dun Tan, and Yunchuan Zhang. Scalable
Digital Libraries based on NCSTRL/Dienst, ECDL 2000.

